

Welcome to wishpy’s documentation!

‘wishpy’ implements Python bindings for Wireshark [https://www.wireshark.org/], a versatile packet analysis tool and libpcap [https://www.tcpdump.org] a widely used library for network packet capturing.

Main goal of the ‘wishpy’ project is to bring the wireshark’s dissectors to the Python world and make them available to the rich ecosystem of Python’s data analysis and visualization tools.

Contents:

	Introduction
	What wishpy is?

	Getting Started

	Wireshark support

	libpcap support

	Documentation

	Examples

	API
	Wireshark Dissector APIs

	libpcap Capturer APIs

Indices and tables

	Index

	Module Index

	Search Page

Introduction

Python Bindings for Wireshark and libpcap

[image: Build Status]
 [https://travis-ci.com/hyphenOs/wishpy][image: Documentation Status]
 [https://wishpy.readthedocs.io/en/latest/?badge-latest][image: Coverage Status]
 [https://coveralls.io/github/hyphenOs/wishpy?branch-master]
What wishpy is?

	Uses cffi to generate Python bindings for wireshark and libpcap

	You can write applications like tshark in Python

	Makes wireshark’s dissectors available in Python and makes libpcap
easily available in Python for packet capture

	This is in active development, but should work on common Linux distributions,
if it doesn’t please file an issue.

	Also,a drop-in replacement for pcapy [https://github.com/helpsystems/pcapy]. Supports all the major pcapy APIs.

	Early Windows support. Please check README-windows [https://github.com/hyphenOs/wishpy/blob/master/README-windows.rst] .

Getting Started

This packages right now is tested only on Linux (specifically Ubuntu 16.04)
To be able to get started, following development environment is required -

	gcc and it’s toolset

	Python 3.5 or higher and Python development environment.

	Supports PyPy 7.3 or higher (compatible with Python 3.6)

It is highly recommended to start with a virtual environment, something like
virtualenv venv

Typically simply doing a python setup.py install should be enough to get
you started. If everything goes well, one will have the modules installed
in the site-packages.

Once the packages are installed, you can run the example code -

Alternatively, if you just want to use wrapped APIs, they are used in -
1. wishpy/scripts/tcpdump.py <interface_name> (For live capturing the packets and dumping json, NOTE: Requires sudo permissions.)
2. wishpy/scripts/tshark.py <pcap-file-path> (For dumping packets from a pcap``ish file as ``json)

Wireshark support

Right now both Wireshark 2.6.x and wireshark 3.2.x are supported.

The best way to make sure this works is through pkg-config. Right now,
default support is for wireshark 2.6 that ships with Ubuntu.
If you have both the versions installed, it’s a little bit tricky. If building
wireshark from source, If you perform a make install (or sudo make install),
the right wireshark.pc file is created and will be used during build.

libpcap support

libpcap [https://tcpdump.org] library > 1.7 is supported. Also, there is a pcapy module, that can be used as a drop in replacement for pcapy [https://github.com/helpsystems/pcapy]. Similar APIs as pcapy are supported. We have performed quick testing with following versions of libpcap on Ubuntu (based on git tag) - libpcap-1.7.4, libpcap-1.8.1, libpcap-1.9.1.

Documentation

We have started with some very ‘basic’ Dissector/Capturer API. See wishpy/scripts/tshark.py to see how it can be used.
This API is very early (in fact this is not really an API, but just a hint about what API might look like.)
and very likely to change going forward. A very early version of the API Documentation is available [https://wishpy.readthedocs.io/en/latest/api.html].

Examples

See the code in wishpy/scripts/ directory for how to use wishpy API.

A More detailed example using wishpy for publishing to Redis is available at the following repo -

	wishpy-examples [https://github.com/hyphenOs/wishpy-examples]

API

Wireshark Dissector APIs

APIs for wireshark’s dissectors.

This module provides consistent APIs for using wireshark’s dissector in
different scenarios. viz. using with live packet capture and using with
a PCAP file. A couple of dissector classes are provided that can be directly used.

WishpyDissectorQueuePython : Can be used with wishpy.libpcap.lib.capturer.Capturer
WishpyDissectorFile: Can be used for printing json data from a pcap(ish) file.

Example:

>>> d = WishpyDissectorFile('file.pcap')
>>> for packet in d.run():
 print(packet)

	
class wishpy.wireshark.lib.dissector.WishpyDissectorBase(*args, **kw)

	A Class that wraps the underlying dissector from epan module of
libwireshark. Right now this simply prints the dissector tree.

	
__init__(*args, **kw)

	Initialize self. See help(type(self)) for accurate signature.

	
apply_filter(filter_str, overwrite=False)

	Applies a filter given by the filter_str to the dissection.

	Args:

	filter_str: str - A string that is in a wireshark filter format.

	Returns:

	result: (int, str) - Result of application 0 success. Negative value
suggesting error. Caller should check the error.

Note: Right now it is recommended to run this method before run method
is called on the dissector.

	
cleanup_epan_dissector()

	Cleans up internal dissector object.

	
clear_filter()

	Clears the dfilter if any.

	
init_epan_dissector()

	Initializes epan_dissect_t and epan_session objects. These
objects are passed to the run method.

	
classmethod packet_to_json(handle_ptr)

	An example method that depicts how to use internal dissector API.

	
classmethod print_dissected_tree_details(dissector)

	

	
classmethod print_dissected_tree_details_api(dissector)

	Print a packets Protocol tree using proto_tree_json API

	
classmethod print_dissected_tree_json_node(node_ptr, level=1)

	Returns a string representing dissected tree using the ftypes API.

	
classmethod print_dissected_tree_json_node_pretty(node_ptr, level=1)

	Returns a string that represents a dissected tree.

	
run(*args, **kw)

	A generator function ``yield``ing at-least the dissected packets.

Implementing this as a generator function helps one to run code
that looks like

>>> for dissected in dissector.run(count=1):
 # do stuff with the dissected packet

This is particularly convenient while performing live capture on
an interface or dissecting a huge file.

	
class wishpy.wireshark.lib.dissector.WishpyDissectorFile(filename)

	Dissector class for PCAP Files.

	
__init__(filename)

	Initialize self. See help(type(self)) for accurate signature.

	
run(count=0, skip=-1)

	Actual function that performs the Dissection.

Right now since we are only supporting dissecting packets from Wiretap
supported files, only dissects packets from a pcap(ish) file.

	
class wishpy.wireshark.lib.dissector.WishpyDissectorQueue(*args, **kw)

	Dissector class for packets received from a Queue(ish) object.

	
dissect_one_packet()

	Dissects a single packet

This should typically call fetch and the perform dissection. All
the queue based ‘dissectors’ will dissect one packet at a time, so
it’s better that this function is in the base class.

	
fetch()

	Implement this function to fetch a single packet from the queue.

Implementation of this function should return the object of the type
Hdr and PacketData

	
class wishpy.wireshark.lib.dissector.WishpyDissectorQueuePython(queue)

	Dissector class for Python Standard Library Queue.

	
__init__(queue)

	Initialize self. See help(type(self)) for accurate signature.

	
fetch()

	Blocking Fetch from a Python Queue.

	
run(count=0)

	yield’s the packet, up to maximum of count packets.

if count is <= 0, infinite iterator.

	
stop()

	Stop’s the generator by setting internal state.

	
exception wishpy.wireshark.lib.dissector.WishpyEpanLibAlreadyInitialized

	Error raised trying to initialize already initialized EPAN Library.

	
exception wishpy.wireshark.lib.dissector.WishpyEpanLibUninitializedError

	Error raised during initialization of EPAN library.

	
exception wishpy.wireshark.lib.dissector.WishpyErrorInitDissector

	Error raised during initialization of dissector and or dissector session.

	
exception wishpy.wireshark.lib.dissector.WishpyErrorWthOpen

	Error raised during opening a Pcap file.

	
wishpy.wireshark.lib.dissector.cleanup_process()

	Per process cleanup. de-init of epan/wtap modules.

	
wishpy.wireshark.lib.dissector.setup_process()

	This method should be called once per process (note: Not thread.) This
will perform underlying library initialization, so that eventually
dissectors can run.

libpcap Capturer APIs

Capture API using the libpcap.

	
class wishpy.libpcap.lib.capturer.PCAPHeader(ts_sec, ts_usec, len, caplen)

	
	
caplen

	captured length of the packet.

	
len

	length of the packet.

	
ts_sec

	seconds part of the timestamp.

	
ts_usec

	micro-seconds part of the timestamp.

	
class wishpy.libpcap.lib.capturer.WishpyCapturer

	Base WishpyCapturer class.

Following API are provided open, close, start, stop.

	
close()

	close: Perform any resource cleanup related to the capturer.

	
open()

	open: Opens the capturer.

Use this to perform any Capturer specific initialization. For
instance, our API deals with Packet Capture Pipelines that can
be connected using Python Queues. So Setting up Queues etc. can
be performed here in this method.

	
start(**kw)

	start: Start actual capture of packets.

Implement in such a way tha it should be possible to start/stop
capture multiple times for an instance of the capturer.

	
stop(**kw)

	stop: Stop actual capture of packets.

Implement in such a way that it should be possible to start/stop
capture multiple times for an instance of the capturer.

	
exception wishpy.libpcap.lib.capturer.WishpyCapturerCaptureError

	

	
class wishpy.libpcap.lib.capturer.WishpyCapturerFileToQueue(filename, queue, **kw)

	A Libpcap capturer class that wraps a PCAP file.

This class provides the Capturer API wrapping a PCAP file. Note: For the
dissection part it is better to directly use
wishpy.wireshark.lib.dissector.WishpyDissectorFile. This class
should be used when you want to take packets from a PCAP file and do
something other than ‘dissect’ing them.

	
__init__(filename, queue, **kw)

	Constructor

	Args:

	filename: PCAP file to be opened for reading.

queue: Queue to send packets to.

	
close()

	Closes internal libpcap handle

libpcap’s pcap_close function is called and our activated flag
is set to False.

	
open()

	Opens the filename for PCAP Capture.

Returns: None
Raises: WishpyCapturerOpenError: If failure to open a file.

	
class wishpy.libpcap.lib.capturer.WishpyCapturerIfaceToQueue(iface, queue, snaplen=0, promisc=True, timeout=10, **kw)

	libpcap based packet capturer for an interface on the system.

This capturer captures packet from the OS interface and posts them,
on the Queue. Right now it is not completely abstracted out what gets
posted on the queue. Assume they are tuples like - (header, data)

	
__init__(iface, queue, snaplen=0, promisc=True, timeout=10, **kw)

	Constructor

	Args:

	queue: Python Queue like objects that supported Get/Put APIs.

Get/Put APIs should be thread/process safe. (eg. Queue, multiprocessing Queue etc.)

iface: string - An Interface Name on the local OS.

snaplen: integer (optional), Maximum Capture length of the data.

Default - Don’t set Capture length (ie. if input value is 0.)

promisc: Boolean (optional). Default True To determine whether to start capturing in ‘promiscuous’ mode.

timeout: integer - Timeout in miliseconds to wait before next ‘batch’ of captured packets is returned

(This value maps directly to libpcap: packet buffer timeout.)
Default value is 10ms. Use lower values for more ‘responsive’ capture, higher values for larger
batches.

**kw: Possible Keyword argument’s that can be supported.

	
close()

	Closes internal libpcap handle

libpcap’s pcap_close function is called and our activated flag
is set to False.

	
open()

	Open’s the Capturerer readying it for performing capture.

Calls libpcap’s pcap_create and depending upon requested
parameters during the Constructor, those values are set and
finally activates the handle.

	
exception wishpy.libpcap.lib.capturer.WishpyCapturerOpenError

	

	
class wishpy.libpcap.lib.capturer.WishpyCapturerQueue(queue, **kw)

	Base Class for Sending Packets to Python Queue like objects.

	
__init__(queue, **kw)

	Constructor

	Args:

	queue: Python Queue like objects that supported Get/Put APIs

The Get/Put APIs should be in a thread/process safe manner.
(eg. Queue, multiprocessing Queue etc.)

**kw: Possible keyword arguments.

	
start(count=-1, serialize=True)

	Starts capturing of the packets.

Note: This is a blocking function.

An application should call this function from a separate
thread of execution. Calls internal pcap_loop function of
libpcap.

	Args:

	
	count: (optional) if specified should be a positive integer

	specifying maximum number of packets to be captured.

	serialize: (optional) bool - Serialize data

	If specified serializes the header and data to PCAPHeader and bytes objects
(default True)

	Returns:

	On Success Nothing.

When pcap_loop returns, A special tuple - ('stop', b'')
is placed on the queue. For the consumer of the queue, this should
signal end of data transfer from the producer.

	Raises:

	On Error Condition wishpy.wireshark.lib.WishpyCapturerCaptureError.

	
stop()

	Stops the capture.

Simply calls internal libpcap’s pcap_breakloop

 Python Module Index

 w

 		 	

 		
 w	

 	[image: -]
 	
 wishpy	

 	
 	
 wishpy.libpcap.lib.capturer	

 	
 	
 wishpy.wireshark.lib.dissector	

Index

 _
 | A
 | C
 | D
 | F
 | I
 | L
 | O
 | P
 | R
 | S
 | T
 | W

_

 	
 	__init__() (wishpy.libpcap.lib.capturer.WishpyCapturerFileToQueue method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerIfaceToQueue method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerQueue method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorFile method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorQueuePython method)

A

 	
 	apply_filter() (wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

C

 	
 	caplen (wishpy.libpcap.lib.capturer.PCAPHeader attribute)

 	cleanup_epan_dissector() (wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

 	cleanup_process() (in module wishpy.wireshark.lib.dissector)

 	
 	clear_filter() (wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

 	close() (wishpy.libpcap.lib.capturer.WishpyCapturer method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerFileToQueue method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerIfaceToQueue method)

D

 	
 	dissect_one_packet() (wishpy.wireshark.lib.dissector.WishpyDissectorQueue method)

F

 	
 	fetch() (wishpy.wireshark.lib.dissector.WishpyDissectorQueue method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorQueuePython method)

I

 	
 	init_epan_dissector() (wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

L

 	
 	len (wishpy.libpcap.lib.capturer.PCAPHeader attribute)

O

 	
 	open() (wishpy.libpcap.lib.capturer.WishpyCapturer method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerFileToQueue method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerIfaceToQueue method)

P

 	
 	packet_to_json() (wishpy.wireshark.lib.dissector.WishpyDissectorBase class method)

 	PCAPHeader (class in wishpy.libpcap.lib.capturer)

 	print_dissected_tree_details() (wishpy.wireshark.lib.dissector.WishpyDissectorBase class method)

 	
 	print_dissected_tree_details_api() (wishpy.wireshark.lib.dissector.WishpyDissectorBase class method)

 	print_dissected_tree_json_node() (wishpy.wireshark.lib.dissector.WishpyDissectorBase class method)

 	print_dissected_tree_json_node_pretty() (wishpy.wireshark.lib.dissector.WishpyDissectorBase class method)

R

 	
 	run() (wishpy.wireshark.lib.dissector.WishpyDissectorBase method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorFile method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorQueuePython method)

S

 	
 	setup_process() (in module wishpy.wireshark.lib.dissector)

 	start() (wishpy.libpcap.lib.capturer.WishpyCapturer method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerQueue method)

 	
 	stop() (wishpy.libpcap.lib.capturer.WishpyCapturer method)

 	(wishpy.libpcap.lib.capturer.WishpyCapturerQueue method)

 	(wishpy.wireshark.lib.dissector.WishpyDissectorQueuePython method)

T

 	
 	ts_sec (wishpy.libpcap.lib.capturer.PCAPHeader attribute)

 	
 	ts_usec (wishpy.libpcap.lib.capturer.PCAPHeader attribute)

W

 	
 	wishpy.libpcap.lib.capturer (module)

 	wishpy.wireshark.lib.dissector (module)

 	WishpyCapturer (class in wishpy.libpcap.lib.capturer)

 	WishpyCapturerCaptureError

 	WishpyCapturerFileToQueue (class in wishpy.libpcap.lib.capturer)

 	WishpyCapturerIfaceToQueue (class in wishpy.libpcap.lib.capturer)

 	WishpyCapturerOpenError

 	WishpyCapturerQueue (class in wishpy.libpcap.lib.capturer)

 	
 	WishpyDissectorBase (class in wishpy.wireshark.lib.dissector)

 	WishpyDissectorFile (class in wishpy.wireshark.lib.dissector)

 	WishpyDissectorQueue (class in wishpy.wireshark.lib.dissector)

 	WishpyDissectorQueuePython (class in wishpy.wireshark.lib.dissector)

 	WishpyEpanLibAlreadyInitialized

 	WishpyEpanLibUninitializedError

 	WishpyErrorInitDissector

 	WishpyErrorWthOpen

 _static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to wishpy’s documentation!

 		
 Introduction

 		
 What wishpy is?

 		
 Getting Started

 		
 Wireshark support

 		
 libpcap support

 		
 Documentation

 		
 Examples

 		
 API

 		
 Wireshark Dissector APIs

 		
 libpcap Capturer APIs

_static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/up.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

